FT99BAGA - -306. —..71B

Astron. Astrophys. 306, 1-8 (1996)

ASTRONOMY
AND
ASTROPHYSICS

Correlation function as a measure of the structure

O. Buryak'+? and A. Doroshkevich!3

! Keldysh Inst. of Appl Math., Miusskaya pl.4, 125047 Moscow, Russia

2 University of Newcastle Upon Tyne, Newcastle, NE1 7RU, UK
3 TAC, Blegdamsvej 17, DK-2100 Copenhagen, @ Denmark

Received 23 December 1994 / Accepted 28 April 1995

Abstract. A geometrical model of structure of the universe is
examined to obtain an analytical expression for the two point
nonlinear correlation function. According to the model the ob-
jects (galaxies) are concentrated into two types of structure
elements - filaments and sheets. We considered the filaments
(similar to galaxy filaments) simply as straight lines and the
sheets (similar to superclusters of galaxies) simply as planes.
The homogeneously distributed objects are also taken into con-
sideration. The spatial distribution of lines, planes and points is
uncorrelated.

The nonlinear correlation function depends on four parame-
ters and is similar to the observed and simulated ones for differ-
ent samples. It describes quite well the correlation of galaxies,
clusters of galaxies and dark matter distribution.

A possible interpretation of the parameters of nonlinear cor-
relation function is discussed.

Key words: cosmology: theory — large scale structure of the
universe — methods: analytical

1. Introduction

The two point correlation function £(| r{ —ry ) = &(r) is
the most popular tool for the investigation of spatial object dis-
tribution both in the observational and simulated catalogues.
The great potential of this method is known and it can be il-
lustrated by the new interesting results obtained during the last
years. Thus, Jorgensen et al. (1993, 1994) showed that oscil-
lations in the spectra of primordial perturbations give rise to
some interesting peculiarities in the correlation function. Let us
remind also the paper of Mo et al., (1992) where characteristic
scales were found in observational catalogues. Recently Pea-
cock & Dodds (1994) reconstructed the initial power spectrum
using the correlation analysis of different samples of galaxies
and galaxy clusters. This list can be continued.

Send offprint requests to: A. Doroshkevich

The main drawback of the correlation method is, of course,
its phenomenological character. Indeed, the interpretation of the
nonlinear correlation function, £ > 1, is ambiguous. The same
correlation function can be generated by different spatial point
distributions. For example, the similar correlation functions are
generated by the Soneira-Peebles (1978) model, by Voronoi tes-
sellation (van de Weygaert, 1991), by the ’shell’ model (Bahcall
et al., 1989) and by many simulations with HDM, CDM and
other power spectra. It is important that the spatial matter distri-
bution in these models is very different. However the shape of
the nonlinear correlation functions is the same for a wide class
of power spectra (Demianski & Doroshkevich (1992)).

The main properties of the observed correlation function
still have no physical explanation. Thus, for all observational
samples the shape of the correlation function (for galaxies and
clusters of galaxies) is approximately the same:

&r) = (r/re)™” (1.1)

with the power index v ~ 1.8. However, the correlation radius,
¢, as a rule, depends on the sample. Thus, for IRAS, CfA and
APM catalogues 7. ~ (5 — 6) h~!Mpc (Davis et al., 1988,
Loveday et al., 1992). But for the sample of dwarf galaxies
(Thuan et al., 1991) . ~ 4 h~'Mpc and r. ~ 15h~!Mpc for
the Great Wall region (Ramella, Heller & Huchra, 1992). Of
course, these variations are produced by strong peculiarities of
the samples. However, adequate physical explanation of these
phenomena are still lacking.

Let us also note that the strong correlation of clusters of
galaxies has no physical explanation. Of course, a similar corre-
lation has been simulated (see, e.g., Klypin & Rhee, 1994, Croft
& Efstathiou, 1994) and, therefore, the parameters of correla-
tion function can be caused by the power spectrum. However,
at present there is a strong limit to what can be done in this area.

There are different interpretations of the correlation func-
tion. Thus, it can be considered as the evidence in favor of hierar-
chical clustering (Soneira & Peebles, 1978) or in favor of fractal
character of galaxy distribution (Coleman & Pietronero, 1992).
Here we interpret the shape of the correlation function as the
evidence in favor of strong concentration of galaxies in structure
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elements. Evidently, additional information is necessary for a
proper interpretation of the correlation function. Nevertheless,
the correlation analysis gives the important quantitative infor-
mation about the spatial matter distribution and it cannot be
ignored in theoretical considerations.

The simplest model of the nonlinear correlation function
is provided by a geometrical model. According to this model
the nonlinear correlation function is generated by the concen-
tration of a significant fraction of the objects along lines and
planes. The great potential of this approach was emphasized
by Zeldovich (see, e.g. Shandarin et al. 1983). This model is
suitable to describe the Large and Super Large Scale Structure
(LSS and SLSS) in the observed distribution of galaxies in deep
galaxy surveys and the dark matter (DM) distribution in dynam-
ical N-body simulations (Buryak, Doroshkevich & Fong, 1994,
hereafter BDF, Doroshkevich et al., 1995, hereafter DFGMM,
Doroshkevich, 1995). In the following we use this model to
construct the nonlinear correlation function.

In the geometrical model filaments are considered simply
as lines and sheets simply as planes. To be more specific, we as-
sume that a filament is identified with a line segment and a sheet
corresponds to a finite planar region. If filaments and sheets are
large enough we neglect the edge effects in our analysis.

This model can be employed to describe the spatial dis-
tribution of various objects. Thus, for the observed catalogues
a ’filament’ is represented by a chain of galaxies or clusters
of galaxies, a ’sheet’ is represented by superclusters or richest
filaments of galaxies. For the DM distribution in simulated cat-
alogues a ’filament’ can be identified with strongly extended
overdense region, whereas a ’sheet’ can be identified with high
dense walls at the boundary of voids or under dense regions.

This approach is not general and it has its limitations. It is an
intermediate step between the local description of matter distri-
bution by means of density and velocity fields and such global
methods as the percolation or fractal analyses. The geometrical
model works at scales comparable to the correlation radius and,
therefore, it can be used to describe the nonlinear correlation
function.

Random distribution of straight lines can be characterized
by the surface density, o, i.e., the mean number of lines inter-
secting a unit area of arbitrary orientation. Similarly, random
distribution of sheets can be characterized by the linear density,
05, i.e., the mean number density of sheets crossing an arbitrary
straight line. Of course, we have to include also some fraction
of homogeneously distributed points. It is characterized by the
3D number density, ny. Parameters of the correlation function -
the power index, v, the correlation radius, 7., and the zero point,
T9, - are related to structure parameters.

In the geometrical model the three and four point correlation
functions can be analytically calculated as well. However, these
expressions are not so simple and, actually, the main advantage
of the analytical approach is lost. Simple numerical simulations
of such matter distribution seem to be more promising ways to
examine the three and four point correlation functions.

This paper is organized as follows. In Sect. 2 the model of
the correlation function is formulated. In Sect. 3 we examine this

model and obtain the two point correlation function of galaxy
distribution. In Sect. 4 we reconstruct the DM correlation func-
tion using some information about the DM distribution from
dynamical N-body simulations. In Sect. 5 we propose a set of
models for the cluster-cluster correlation function. In Sects. 6
and 7 evolution of the correlation function and our results are
discussed.

2. The analytical model of correlation function

In this section we consider the correlation function for three
simple objects distributions: a homogeneous point distribution
and randomly distributed straight lines and planes. Further we
construct the composite correlation function including all three
types of point distribution.

2.1. Correlation function of homogeneous point distribution

The simplest model of the object distribution is a homogeneous
Poissonian distribution with a mean number density < ng >=
np. Asitis known, in this case the number of actual pairs, DD, at
the distance (r, r + dr) is identical to the number of Poissonian
pairs, PP, at the same distance

DD = PP =<ng > 4r2dr = drnprtdr 2.1
Therefore, in this model we obtain the trivial result:
DD
1 = —_— =
+E0) = S5 = 1
&(r) = (2.2)

2.2. Correlation function of randomly distributed straight lines

The more interesting model is a system of randomly distributed
identical straight lines. It is characterized by the surface density
of lines, oy. We assume that objects are distributed homoge-
neously along lines with a linear number density n;.

Let us consider a sphere with a radius r which has an object
and, therefore, a straight line at its center. In this case the main
characteristics of the point distribution are: the mean number of
lines, Ny, intersecting the sphere, the mean length of intersec-
tion, If, and the mean 3D number density of objects, < ng >
inside the sphere. These parameters can be found by the stan-
dard method (see, e.g., BDF). Here we present only the final
expressions:

l f = 4V/ S = gr
<n>= nllfo/V = 2.3)
where V' and S are the volume and surface area of the sphere.

However, it must be taken into account that a line is crossing
through the center of a sphere. Thus, we have to use the condi-
tional mean number of lines intersecting the sphere. This value,
N)’:, can be written in the following form:

Ny = 05048 = 27r’oy,

205

x 1 Ny
N; = T )kak+1(Nf)_ -1 (49

(1 - Wo)
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where Wy (Ny) is the probability to find k lines intersecting
the sphere. Therefore, using the Poissonian probability Wy, =
k

%e"”f we obtain:
4 «
DD = 2’n1d'r + §n1der,
PP =8nr?osnidr = 4Ngnidr,
1 2N, 2
=gy, (1+ ) 5

Thus, for small 7 (Ny << 1)€ = (2Ns)~! o r=2, and for large
r (N >> 1) &(r) = —2/3.

(2.5)

2.3. Correlation function of randomly distributed sheets

This case can be treated in the same way as the previous one.
We assume that the objects are distributed homogeneously on
identical sheets with a surface density n,.

Let us consider again a sphere with radius r which has in
its center an object and, therefore, a sheet. For this model the
mean number of sheets, N, intersecting the sphere, the mean
area of intersection, S, and the mean 3D number density of
objects inside the sphere, < ng >, are:

Ss = %m‘z,

The conditional mean number of sheets intersecting the sphere,
N7, is

N, = 4dogr, <ng>= 205n,  (2.6)

N*——l-ikW (N)——]L—l 2.7
A=W e T (- W) ‘
Therefore, in this model
DD =2xnrdrn, + gwrdrnzN: ,
PP = 8nrldrosn, = 4ANyn,rdr,
1 2N, 1
5(7')—3—]\/,8 (1+6Ns—1) _E’;’ (28)

and, therefore, £ = 1/N; r~1 for small r (N, << 1), and
&(r) = —1/3 for large r (N, >> 1)

2.4. The composite model of correlation function

It is clear that the simple models considered above cannot be
used to describe any realistic catalogues. It is more reasonable
to use a composite model in which all three types of structure
elements (sheet, filament and homogeneous populations) are
mixed with the fraction factors f,, ff and f correspondingly.
The mean density of particles and fraction factors can be
written as
<n>= nh+20fn1 +2asn2=nh+nf+ns 2.9)

fh=nh/<n>, ff=20fn1/<n>, fs=203n2/<n>

Therefore, for the composite model we obtain

4 4
DD = fa (47T7‘2d7‘nh + §n|dr'Nf + §7rrdrn2Ns)

4
+ fr <2n1dr+ + gnldrN}* + %ﬂ'rdrnst + 47rr2drnh)

4 4
+ fs (27rrdrn2 + —énlder + gﬂrdrnzN: + 47rr2drnh>

PP =4rridr < n >=4nridrng,/ fi

= 47rr2drnf/ff = 47rr2drn3/fs

where it is assumed that a) the sphere is centered on an ob-
ject from the Poisson population, and b) the sphere is centered
on an object from filament and sheet populations. Finally, the
analytical expression for the correlation function is

_f7 2N¢ 12 2N,
§(T')—6Nf (1+6Nf_1)+3—]vs-(l+eNs_l)_
—(fs +2f5)/3 (2.10)
fh + ff + fs =1

Let us remind that according to (2.3) and (2.6) Ny = 2o £
N, = 40,7 and, therefore, for small 7 £(r) o< 7~2. This compos-
ite model reduces to (2.2), (2.5) and (2.8) when fr, =1, fy =1
and f; = 1 correspondingly.

2.5. Some properties of the correlation function

Let us consider in more detail the relationship (2.10) and find
the main properties of the correlation function £(r). Natu-
rally, our model cannot be applied for large distances, r >>
re, E(r) << 1, where the matter distribution remembers’ the
initial perturbations and, therefore, the small correlations in the
distribution of structure elements are essential. Let us remind
that we assumed the uncorrelated spatial distribution of struc-
ture elements and, so, the correlation function (2.10) describes
only the matter concentration into structure elements.

Thus, we will concentrate our attention on the nonlinear
region where the correlation function is large enough and our
approach is justified. As a rule, in this region, for the analytical
consideration we can use the simpler version of (2.10):

Er) = (rp/r)* + 2rs/T) — €no

% = f2/Amos, 15 = f2/80s, feo = (fs + 2f5)/3

where we assumed that Ny < 1, N, < 1.
The correlation radius, 7, is defined by the relation

(2.11)

Ts
(0 =1, 1o = g (1 + /17 CZ), ©.12)

= (L+&)Ts/rs)
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Another important parameter of the correlation function, the
zero point, rp, can be found from

&(ro) = 0, 719= ;"To (1+ 1+ 1§°20042> (2.13)

For the important case s > 7y,
simplify to

¢ < 1 these expressions

Te ® 27’3/(1 +€x0), ToR 27's/§oo

"'0/7'c—‘ 1~ l/foo

It establishes the interesting relations between the main param-
eters of the correlation function and characteristics of the struc-
ture.

For the model (2.11) near the point = 7. the power index
of the correlation function - is a weak function of 7:

(2.14)

¥ =7l +ﬂc<% —D+.) 2.16)

/1+ 2
Ye =2(1 +§oo)-\/1——+—22CT,

Be=vV7v—1-¢xo (3_’7c_2(1+§oo)/’)’c)

It is interesting that in two limiting cases, ( < 1 and { > 1
the power index is connected with r, and 7 as follows:

I+ &oo < 7e < 2(1 +&o0)

Yem (1 = refre)™!, (<1 2.17a)

Yem2(1 — r2/r)7 > 1 (2.17b)

3. The correlation function of galaxy distribution

In this section we consider the composite model (2.10) with
the structure parameters found from the observed galaxy distri-
bution. We use the estimates of the main structure parameters
obtained by BDF from deep galaxy surveys.
Thus, according to BDF, the distribution of galaxy filaments
can be characterized by the surface density
o~ 0.5 x 107 2h*Mpc > (3.1
In this case the SLSS elements can be considered as the sheet
population. The characteristic scale of the SLSS observed from
two different types of the surveys gives:
os ~2x 1072hMpc™!, o, ~0.77 x 10~ 2hMpc~". (3.2)
To test the possible shape of the composite correlation func-
tion for these structure parameters two models with the same
value of o and different parameters o,, fr and f, were calcu-
lated. For both models we assumed that all galaxies are concen-
trated into the structure elements and, thus, f5 = 0.
The functions £(r) are shown in Fig. 1 for the correlation
radius 7. = 5.5h~!Mpc. The parameters of the models are

10.

l‘OOE"

FRTTTT IR

0.1F

FERRTTY

€gal

10.f

e |

1. 10
r h™' Mpc

Fig. 1. Correlation function (2.10) for galaxies. Parameters are pre-
sented in Table 1. Straight lines correspond to the function (3.3)

Table 1.
051072 fs  mh 051072 ff nih roh”!
hMpc ™! Mpc~? h?Mpc~2 Mpc~'  Mpc
2. 0.84 021 0.50 0.16 0.16 15.2
1. 0.58 0.29 0.50 042 0.42 14.8
1. 0.56 028 0.25 0.44 0.88 13.8

presented in Table 1. The straight line in Fig. 1 corresponds to
the function

Egar(r) = (re/r)"* (3.3)

These results illustrate the potential of the composite model and
allow us to evaluate the galaxy fractions f, and f in different
elements of the structure.

There is however a disagreement between estimates (3.1),
(3.2) and assumptions of the model (2.10). The value of the fila-
ment surface density, o, used above was obtained by BDF as a
low limit of size of the structure when the poorest filaments were
taken into account. However, in the model (2.10) all filaments
are considered as identical and, therefore, the surface density of
the *average’ filaments should be used. It could be smaller by a
factor of 1.5 - 2 than the accepted value. To test such ’correction’
in Fig. 1 the correlation function for the smaller surface density
oy (the model 3 in Table 1) is shown as well. In this case the
correlation radius 7, = 5.5h~!Mpc but the fractions f, and f f
have different values than above.
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Table 2. 10. & ™

051072 fs o51072 fr reh™! roh™! E
hMpc~! h*Mpc—? Mpc  Mpc

0.1 E

4. 0.88 1.0 0.12 3.0 8.5 E

4. 0.39 0.25 0.61 3.0 5.2 3

3. 072 025 003 3.0 110 ]

Other values of the correlation radius 7. can be obtained for
other values of the fractions f¢, fs. We conclude that, actually,
the correlation radius depends on many structure parameters in
the investigated catalogue.

The estimates of the mean linear density of galaxies in fila-
ments, n{, and surface density of galaxies in sheets, n, are also
presented in Table 1 for < n, >~ 10~2h*Mpc . The mean
separation of galaxies in the structure elements, nl“' and n, 12
are less than < n >~'/3 by a factor of 2-5.

4. The correlation function of dark matter distribution

For simulated DM distribution, as a rule, the correlation func-
tion of DM spatial distribution is characterized by the same
power index, v ~ 1.8, as for galaxies and the correlation ra-
dius, 7. ~ 3.h~'Mpc. Usually this difference in correlation
radius is attributed to the ’biasing’ factor, b. Analysis of LSS
and SLSS in numerical simulations (DFGMM) shows however
that the spatial distribution of ’galaxies’ and DM is very differ-
ent. Therefore, it is interesting to test the consistency between
the parameters of the correlation function and the DM structure
on the basis of model (2.10).

As it was found by DFGMM the DM distribution is dom-
inated by the sheet like structure. Filamentary structure exists
mainly in the smallest scale and it includes only a small fraction
of the DM population. But, contrarily to the galaxy distribution,
the fraction of homogeneously distributed DM particles could
be significant (10-20%).

Thus, properties and parameters of the LSS for ’galaxy’
and DM populations are very different. However, the shape and
the power index of the correlation function are the same for
both populations. The model (2.10) enables us to obtain the
correlation function with the reasonable correlation radius, 7, =
3.h~!Mpc, and with the power index, vy &~ 1.8 for the range
parameters presented in Table 2.

Estimates of o, and oy found by DFGMM were used. The
corresponding correlation functions are shown in Fig. 2.

The straight line in Fig. 2 corresponds to the function

Epm(r) = (re/m)'®

with 7. = 3.h~"Mpc.
Notice again that in the model (2.10) all filaments and
sheets were assumed to be identical while the direct analysis

.1)

fDM

—+

1 1 1 ] ! { 11 I

1. 10
r h™! Mpc

Fig. 2. Correlation function (2.10) for DM distribution. Parameters are
presented in Table 2. Straight lines correspond to the function (4.1)

(DFGMM) shows distribution of the structure elements with
richness. Thus, the model (2.10) should be also corrected for
this factor. However, in this paper we are interested in the depen-
dence of the correlation function on other structure parameters.
For example, the model 2 in Fig. 2 and in Table 2 corresponds to
the smaller surface density of DM filaments. The model 3 in Fig.
2 and in Table 2 illustrates the influence of the homogeneous
background of DM particles (f, = 0.25) on the correlation
function.

This sample of correlation functions demonstrates that the
same correlation function can be generated by different DM
distributions.

5. The correlation function of clusters of galaxies

The observed cluster-cluster correlation function is character-
ized by the power index, -, by the correlation radius, ., and by
the zero point, ¢:

vy~ 1.8, 7r.~20h"'Mpc, 7o~ (50—60)h~"Mpc (5.1)
(see,e.g., Daltonetal., 1992, Peacock & West, 1992, Scaramella
et al., 1993). The mean number density of clusters, n;, and the
mean separation of the clusters, D, are

ne & 2.4 x 1073h*Mpc 3,

Dy =n3'® ~ 35h "Mpe.

cl

(5.2)
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Table 3 On the other hand, the percolation analysis gives the value
. P = 3 (Klypin, 1988) for the percolation parameter which is
051072 f, n21072 07107 ff nih roh™! close to the Poissonian one. This fact shows that the cluster pop-
hMpc™! h*Mpc~2? h*Mpc~? Mpc~! Mpc ulation has a less pronounced structure and there is a significant

fraction of isolated clusters.
0.20 039 024 0.64 0.41  0.08 51. Therefore, it can be expected that the spatial distribution of
0.20 026 0.16 0.25 034 0.16 46. clusters can be described by our analytical model. It is signifi-
cant that a numerical "shell’ model (Bahcall et al, 1989) which is
0.20 0.36 021 0.16 020 015 64 close to the model (2.10) in many respects is consistent with the
0.15 027 022 0.09 0.17 023 68. observed cluster correlation. Moreover, the observed parame-
0.10 027 032 0.50 033 0.08 60. ters v, 7o and vy (5.1) approximately satisfy the relationship

(2.17a).
We present here five models of correlation function. Their
parameters are listed in Table 3. Fig. 3 shows the corresponding
10. 77 g y ———— 3 correlation functions. For all models the correlation radius is
M 1 1 equal to 20h~!Mpc, and we used data (5.2) to obtain the mean
0.1 F — 1 number density of clusters in the structure elements. These mod-
TE ' ' . . 3 clsshowthat, indeed, itis possible to interpret the observed and
10. £, 1 ' ' T '2 "%  simulated cluster-cluster correlation functions as a result of the
L cluster concentrations into structure elements of the SLSS.

01’ "o, E

scl
/
(@3]

d ul

E 4
. \ 5 E
3
0.1F E
FoL A ) , , X . X ) | 3
10 100

r h™' Mpc

Fig. 3. Correlation function for the clusters of galaxies. Parameters
are presented in Table 3. Straight lines correspond to the function
& = (re/m)"® with r. = 20h~"Mpc

The values of 7, 1o, ne and D strongly depend on the
sample. There are also other estimates (Bahcall, 1988, Postman,
Huchra & Geller, 1992)

na ~ 6 x 107°*Mpc3, Dy ~55h 'Mpc.  (5.3)

Estimates of the correlation radius, 7., and the zero point, rg, for
some samples may be as high as 50h~'Mpc and 100h~!Mpc
correspondingly (Bahcall, 1988).

A significant fraction of clusters forms chains in superclus-
ters of galaxies which are similar to the well known chain in the
Perseus supercluster (rich clusters Abel 426, 347 & 262). An
example of clusters walls has been demonstrated by Kopylov
et al., (1988). A catalog of clusters of clusters of galaxies was
prepared by Bahcall & Soneira (1984). The linear size of such
clusters of clusters could be as large as 100h~'Mpc.

Of course, the spatial distribution of clusters should be inves-
tigated in more detail to reveal the quantitative characteristics
of their distribution. However, the small values of oy and o in
Table 3 show that it is necessary to use very large catalogues
in order to get statistically significant estimates. On the other
hand, we found here a mean separation of clusters in sheets
D3, = (20 — 25)h~'Mpc which is close to that in the homoge-
neous population

D ~ 357, *h~"Mpc ~ 45h~"Mpc. (5.4)
This means that it is very difficult to identify sheets in obser-
vational catalogues. For the filament population the expected
mean separation of clusters is close to Sh~!Mpc and it is easier
to identify it.

6. Evolution of the correlation function

Evolution of the correlation function has been simulated for
different spectra of the primordial perturbations and, in general,
it can be described as a growth of amplitude (or correlation
radius, ;) and power index, . On the other hand, the direct
analysis of the DM structure evolution (DFGMM) shows that
there are three main evolutionary periods:

1. The structure arises during a short period which is defined
by the amplitude of density perturbations. At the same time the
nonlinear part of the correlation function is formed.

2. Later the typical scale of the LSS grows slowly.

3. During the last period of evolution the sheets are trans-
formed to filaments and further to a system of knots.

Therefore, as a rule, f; is an increasing function of time
while fs is a decreasing one. Expressions (2.12), (2.16) show
that this picture of structure evolution is in a qualitative agree-
ment with evolution of the correlation function. However, the
presently available data do not allow us to test this evolutionary
history more quantitativly.
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For the cluster - cluster correlation function the evolution
is very slow because the mean velocity of clusters is relatively
small. Probably, the continuous formation of new clusters can
be considered as an essential factor in the evolution of the spatial
distribution of clusters.

7. Discussion

The main aim of this paper is to show that the nonlinear part
of observed and simulated correlation functions can be gener-
ated by the concentration of the objects (galaxies, DM particles
and clusters of galaxies) into structure elements - filaments and
sheets. Of course, the converse is not true and various spatial dis-
tributions of objects can generate the same correlation function.
It is essential that in order to construct the model of observed
correlation function we have to use no less than two types of
structure elements (filaments and sheets) and, therefore, no less
than three structure parameters. Probably, the nonhomogeneous
matter distribution into structure elements produces similar ef-
fects in numerical models (Bahcall etal., 1989, van de Weygaert,
1991).

Thus, we can conclude. that the parameters of the nonlin-
ear correlation function depend on many structure parameters
and, therefore, the interpretation of the correlation function is
ambiguous.

The model (2.10) gives a good approximation of the ob-
served correlation function in nonlinear area for a wide range
of structure parameters. Moreover, using the observed values
of basic structure parameters, such as the surface density of fil-
aments, oy, and the linear density of sheets, o, we can also
evaluate the fraction of objects concentrated in different types
of the structure elements and find the reasonable mean separa-
tion of objects in structure elements. These results show that
in many instances the model (2.10) corresponds to the actual
situation.

The analysis of Sects. 3 and 4 shows that the biasing param-
eter, b, describing the difference between the spatial distribution
of DM and ’galaxies’ actually depends on many structure pa-
rameters. Therefore, the biasing parameter is not a universal
characteristic of matter distribution (or DM model), but, rather,
it is a characteristic of the formation of galaxies and structure.
Thus, for galaxies and clusters the structure parameters have
different origins and there is no reason to expect the same bi-
asing parameter for these objects. This conclusion is consistent
with the results of Peacock & Dodds (1994). Moreover, there
are good reasons to think that the biasing parameter depends on
the considered sample of objects and, so, it is different for over
and under dense regions.

The model (2.10) is very simple and there is a limit to what
can be done in its framework. Thus, this model cannot explain
the remarkably stable value of the power index v = 1.8 in all
observed samples for all classes of objects. Of course, the DM
and galaxy distributions evolve and therefore the value of ~
characterizes the evolutionary period. However, evolution of
the cluster distribution is slow (Croft & Efstathiou, 1994) and,
perhaps, it manifests in the continuous cluster formation. Thus,

in this case the power index characterizes rather the spatial dis-
tribution of regions where clusters form and emergence of the
same value of v is surprising.

As noted in the introduction, for some observed samples of
galaxies the correlation radii are different although the power
index is the same. On the basis of the model (2.10) this fact can
be accounted for by changing the structure parameters while
maintaining the same (or close) fractions fs and fy. Probably,
the universal dimensionless correlation function (Bahcall, 1988)
can be interpreted by the same way. However, such an explana-
tion is not fully satisfactory and requires further investigation.

Sometimes the power law dependence of the correlation
function (1.1) and the surprisingly universal value of v ~ 1.8
are considered as the evidence in favor of fractal and multifrac-
tal properties of the matter distribution (see, e.g., Coleman &
Pietronero, 1992). Actually, such an approach may be effec-
tively used to obtain additional quantitative characteristics of
the object distribution. However, the previous discussion shows
that these facts are not a good basis for the modification of
fundamental concepts of cosmology. Various evolutionary his-
tories can result in similar correlation and fractal properties and
therefore interpretation of these properties is ambiguous.

Traditionally, the strong correlation of clusters is described
by the theory of linear Gaussian fluctuations in the smoothed
density field (see, e.g., Holtzman & Primak, 1992, Croft & Efs-
tathiou, 1994). However, this approach does not provide any
physical explanation of the strong cluster-cluster correlation
and, so, it has a rather phenomenological character.

However, the results in Sect. 5 show that the observed corre-
lation function can be generated by inclusion of the clusters into
structure elements whose mean separation exceeds the correla-
tion radius by a factor of 5 - 10. In this way we have to consider
ranges of scales which are typical for the spatial distribution
of gravitational potential of perturbations and, thus, the strong
correlation can be attributed to the concentration of clusters into
elements of the SLSS.

Concentration of clusters in the structure elements is con-
sistent with the general ideas of the nonlinear theory of gravi-
tational instability. Indeed, as it has been argued by Buryak et
al. (1992) and Kofman et al. (1992), that the spatial distribu-
tion of SLSS elements is determined by the spatial distribution
of the gravitational (or velocity) potential. It is therefore rea-
sonable to expect that the spatial distribution of rich clusters
is also determined by the gravitational potential of primordial
perturbations. Rich clusters should be concentrated mainly into
a system of 2D sheet and 1D filament inside deep ’wells’ or,
partly, around very deep minima of potential. If this assumption
is correct then the SLSS and the structure in the spatial distribu-
tion of clusters are generated by the same causes. In this case the
strong cluster - cluster correlation is simply a consequence of
preferential cluster formation in the SLSS elements. To test this
hypothesis we have to study the cross correlation of the poten-
tial and clusters distribution in numerical simulations. Such an
analysis can also determine the fraction of clusters distributed
quasi homogeneously.
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However, although the concentration of clusters and galax-
ies into structure elements is similar, what was emphasized, for
example, by the universal dimensionless correlation function
(Bahcall, 1988), this analogy has a rather formal character be-
cause the physical causes of the LSS and SLSS formation and
their evolution are different.
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